
An Empirical Analysis of Local Search in

Stochastic Optimization for Planner Strategy Selection

Barbara Engelhardt, Steve Chien
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

{firstname.lastname}@jpl.nasa.gov

Abstract

Optimization of expected values in a
stochastic domain is common in real
world applications. However, it is often
difficult to solve such optimization
problems without significant knowledge
about the surface defined by the
stochastic function. In this paper we
examine local search techniques to solve
stochastic optimization. In particular, we
analyze assumptions of smoothness upon
which these approaches often rely. We
examine these assumptions in the context
of optimizing search heuristics for a
planner/scheduler on two problem
domains. We compare three search
algorithms to improve the heuristic sets
and show that two local search
algorithms perform well and also present
empirical data that suggests this is due to
smoothness properties of the search
space..

1. Introduction
In many optimization applications, the optimization
problem is made more difficult because the cost of
determining the utility of a solution is expensive (e.g., high
computational cost, limited data). This problem is
exacerbated in stochastic domains where numerous
samples are often required to accurately estimate the
expected value (which is usually the optimization target)
based on a probabilistic decision criteria. In many such
applications, high dimensionality (e.g., large search space)
and complex optimization spaces (e.g., non-convex)
combine to make the problem difficult.

For many large-scale problems, local search and iterative
improvement algorithms have been effective in finding
good solutions. In particular, many gradient following
approaches have been successfully applied to difficult real-

.

world optimization problems [0]. However, these
approaches rely on properties of the search space: that the
surface has some notion of smoothness to enable the
gradient to lead to a local maxima; and that a local maxima
is likely to produce an adequate value. Furthermore, since
the particular optimization approach often defines the
search operators, it also defines the locale of the strategy
search space. Consequently, some optimization strategies
would result in a search space with smoothness properties
while other generation strategies would not.

We examine this general approach applied to learning
heuristics to guide search for a planner/scheduler that
solves problems from a fixed but unknown problem
distribution. We study the effectiveness of local search for
optimizing planner strategies, where a strategy encodes the
decision policy for the planner at each choice point in the
search. In particular, we examine several issues of general
interest:

1. We show that two different local search stochastic
optimization methods find strategies that significantly
outperform both the human expert derived strategy
and a non-local search strategy.

2. We show that the smoothness property holds for both
local search algorithms (despite their searching two
quite different spaces)

3. Surprisingly, examining the learning trials showed that
the learning runs had to modify the initial strategies
considerable before showing significant improvement.
This either meant that the learning algorithms were
making poor initial steps and better later ones, or that
the learned strategies lay within a valley. We show
empirical results that show that the latter hypothesis is
true.

Because our approach is modular to allow arbitrary
candidate generation algorithms, we are able to examine
the problem for vastly different generation strategies. In
particular, we examine a local beam-search candidate
generation strategy and an evolutionary computation
strategy.

The remainder of this paper is organized as follows. First,
we describe the general approach to stochastic

optimization. Second, we describe how the planning
application is an instance of stochastic optimization. As
part of this, we describe the specifics of the control
strategy encodings. Third, we describe the empirical
results, focusing on the hypotheses outlined above.
Finally, we describe related and future work in this area.

2. Stochastic Optimization
We now describe our general iterative framework for
optimization of expected value in stochastic domains.
First, hypotheses are generated by a local search, then
these hypotheses are evaluated by testing them in the
application domain and scoring the result (see Figure 1).
This testing occurs under the direction of a statistical
evaluation component (described below). When the best
one or several hypotheses are known with the desired
confidence, the process is repeated (e.g., generation of new
hypotheses). This entire cycle is repeated until some
termination condition is met (e.g., number of cycles,

quiescence).

To evaluate the set of candidate hypothesis steps, we use
statistical methods that minimize resources used to satisfy
a decision criteria [1]1. While the algorithm can use an
arbitrary decision criterion, in this paper we focus on the
use of the Probably Approximately Correct (PAC)
requirement, to determine when the utility of one
hypothesis is superior to another based on pair-wise
comparisons. With the PAC decision requirement, and
algorithm must make decisions with a given confidence
(expressed that the probability that its selection is correct is
greater than δ) to select the and appropriate hypothesis
(expressed that its utility must be within ε of the true best
hypothesis) as expressed in Equation (1). Because any
specific decision either satisfies or does not satisfy the
requirement that the selected hypothesis is within ε of the
true best hypothesis, the PAC requirement specifies that

1 In this paper we focus on the candidate hypothesis
generation strategies and the outer loop. The statistical
evaluation phase of the learning process is described in
further detail in [1,2]

over a large number of decisions that the accuracy rate
must meet δ. For a pair of distributions, it is relatively
straightforward to calculate the probability that one has a
higher than the other. However, for selection of a single
hypothesis from a set of n hypotheses requires summation
of a number of pairwise comparisons. To minimize
resource usage, the algorithm allocates error to each pair-
wise comparison based on the estimated cost of samples
for

(1)
∑

−

=

≤+>−<
1

1

]|ˆˆPr[
k

i
seliseli HHHH δεε

(2)
∑

−1

1
,,

k

i
iselisel nc

those hypotheses, and allocates a greater error to costly
comparisons. Thus, the overall error criterion is met using
the fewest resources possible by minimizing Equation (2)
after each sample where c is the cost of the best hypothesis
and the cost of the ith hypothesis, and n is the number of
samples allocated to the comparison. The number of
samples, n, can be generated, given a normal distribution
of sample utility, by estimating the difference in expected
utility and variance of each hypothesis. For more
information regarding these techniques, see [1].

3. Learning Planner Heuristics as Stochastic
Optimization
We investigate stochastic optimization in the context of
learning control strategies for the ASPEN planner. ASPEN
uses heuristics to facilitate the iterative search for a
feasible and high utility plan. During each search step, a
planner confronts a series of decisions such as which
schedule conflict to repair or the action to take to repair it.
The planner resolves these choices based on the heuristics
and weights for the choice points to apply iterative repair
[13] (thus defining the control strategy of the planner and
hence the expected utility of the resulting plans).

Specifically, in our setup, a strategy hypothesis is a vectors
of a weight for every heuristic function, with a weight of 0
for a heuristic not in use. The utility of a hypothesis can be
determined by running the planner using the control
strategy hypothesis on a certain problem instance and
scoring the resulting plan. A problem generator for each
domain provides a stochastic set of problem instances to
enhance the robustness of the expected solution for the
entire planning domain.

In our ASPEN setup, there are twelve choice points in the
repair search space. Higher level choice points include
choosing the conflict to resolve and choosing the resolution
method, such as preferring open constraints before violated
constraints, or preferring to add activities over moving
them. Once a resolution method is selected, further choice
points influence applications of the choice point (e.g.,

Set of Hypotheses

Hypothesis
Evaluation

Hypothesis
Generation

Top hypothesis

Figure 1 : Optimization cycle - given a set of
hypotheses, ranks these hypothese, and generates a
next generation based on the rank of the previous
generation

where to place a newly created activity and how to
instantiate its parameters). For each choice point, there are
many heuristics that might be used. The hypothesis vector
is the list of relative weight that is given to each heuristic
for that choice point, and by default the choice is random.
Since the planner is stochastic, the order that the heuristics
are used at each step is randomized, so multiple runs even
for the same problem instance may yield a range of
solutions (plans) and hence a range of utilities.

The repair heuristics were developed for individual domain
search requirements from ASPEN applications [3]. There
are also domain-specific heuristics, which reference
particular features of a domain in order to affect the search.
For each domain, the human expert strategy hypotheses
was derived independently from (and prior to) our study by
manual experimentation and domain analysis.

We examine three different spacecraft domains, which
satisfy the normality assumption of the evaluation method.
The first domain, Earth Orbiter-1 (EO-1), is an earth
imaging satellite. The domain consists of managing
spacecraft operations constraints (power, thermal, pointing,
buffers, telecommunications, etc.) and science goals
(imaging targets and calibrating instruments with
observation parameters). Each problem instance is to
create a two-day operations plan with: a typical weather
and instrument pattern, observation goals (between 3 and
16), and a number of satellite passes (between 50 and 175).
EO-1 plans are preferring more calibrations and
observations, earlier start times for the observations, fewer
solar array and aperture manipulations, lower maximum
value over the entire schedule horizon for the solar array
usage, and higher levels of propellant. The Comet Lander
domain models landed operations of a spacecraft designed
to land on a comet and return a sample to earth. Resources
include power, battery, communications, RAM,
communications relay in-view, drill, and ovens. Science
includes mining and analyzing a sample from the comet,
and imaging. The problem generator includes between 1
and 11 mining activities and between 1 and 24 imaging
activities at random start times. The scoring functions for
the Comet Lander domain includes preferences for more
imaging activities, more mining activities, more battery
charge over the entire horizon, fewer drill movements, and
fewer uplink activities.

The two local search types used were a local beam search
method and an evolutionary computation method. The
local beam search [9] defines a vector’s neighborhood as
changing the subset of the vector associated with a choice
point by less than a certain step size. As opposed to
propagating only highest-ranking vector, the search
propagates a beam b of vectors, where b is greater or equal
to 1. Samples for each individual candidate hypothesis are
generated and scored using the planner, and ranking is
done by pair-wise comparisons of these sample utilities for

each candidate hypothesis in a generation. For each
generation, the beam search takes the top ranking b
hypotheses, creates b/g candidate neighbor hypotheses for
each of them, and ranks the g candidate hypotheses to
create the subsequent generation.

 The evolutionary algorithm [5] uses three general
operators (crossover, mutation, and reproduction) to
generate the next set of hypotheses. Parents are chosen
based on their relative ranking, where the higher-scoring
hypotheses are more likely to be parents. The crossover
operator was not aware of subsets of the hypothesis vector
related to each choice point, so it could choose to split
within one of those subsets. For all operators, the results
are normalized to 100% before evaluation. Samples for
each individual candidate hypothesis are generated and
scored using the planner, and ranking is done by pair-wise
comparisons of these sample utilities for each candidate
hypothesis in a generation. For each hypothesis in a
generation, the algorithm either reproduces one parent or
crosses two parents based on their ranking in the previous
generation, and mutates the resulting candidate hypothesis.

Random sampling is another (non-local) method of search.
Vectors are generated at random and deep sampling is
performed on these vectors for a planning domain. The
results show a distribution of random hypothesis points and
expected utility for these random points in the strategy
space.

Although the local search algorithms are greedy given a
correct ranking, due to sampling error the ranking
algorithm can produce only an approximation of the
correct ranking. Furthermore, as the overall utility of the
candidate hypotheses continues to improve, ranking is
more difficult because the hypotheses have higher
variances relative to the differences in the mean (this is a
phenomenon well understood related to the Least
Favorable Configuration (LFC) in statistical ranking).
Consequently, the highest overall expected utility
hypothesis might not occur in the final iteration, and the
optimization algorithm does not know the true utilities of
the strategies sampled (it only has estimates). To address
this problem, each of our algorithms (beam-search and
evolutionary) select the highest estimated utility strategy
from all seen during that run (e.g., potentially not the last
strategy). When we report that strategy’s utility, we report
a true utility based on a deep sample of many more
samples. Since each run takes several CPU days, we are
continuing to perform more optimization runs to provide
more detailed results.

4. Empirical Results
One simple question is “Can the local optimization
techniques improve on the human expert strategies? In
both the EO-1 domain and the Comet Lander domain, we
compare expected utilities of: the handcrafted expert

strategy and best and average strategies found by: random
sample in Table 1. For local beam search and local genetic
search we report on the top strategy in the final set of
strategies (recall that the beam has several strategies
retained and the genetic search has the population) as well
as the average of the strategies in the final set. While the
learned strategies outperformed the expert strategies,
surprisingly the expert strategy in the EO-1 domain was
worse than a randomly generated strategy. This is because
the best strategies tend to be highly stochastic (e.g., have a
strategy for a choice point where two heuristics are
reasonably likely to be selected, such as 60% A 40% B).
In contrast, we have observed that human experts have a
tendency to develop choice point heuristics that are less
stochastic (e.g., 95% A 5% B).

Expert Random
Sample

Local Beam
Search

Genetic Search

Domain High Mean High Mean High Mean

Comet
Lander

0.538 0.531 0.461 0.584 0.549 0.593 0.569

EO-1 0.161 0.341 0.196 0.446 0.426 0.444 0.382

Table 1: Summary Utility Results

Histogram of Random Samples
for EO-1 Domain

0

5

10

15

20

25

30

35

0.15 0.2 0.25 0.3 0.35 0.4 0.45

Expected U tility B in

Histogram of Random
Hypotheses for Comet Lander

0

5

10

15

0.4 0.43 0.46 0.49 0.52 0.55 0.59

Expected Utility Bin

F
re

q
u

en
cy

Table 2: Histogram Summaries

0 . 15

0 . 2

0 . 2 5

0 . 3

0 . 3 5

0 . 4

0 . 4 5

1 3 5 7 9 11 13 15 17 19 2 1 2 3 2 5

0 . 15

0 . 2

0 . 2 5

0 . 3

0 . 3 5

0 . 4

0 . 4 5

1 2 3 4 5 6 7

0 . 15

0 . 2

0 . 2 5

0 . 3

0 . 3 5

0 . 4

0 . 4 5

1 4 7 10 13 16 19 2 2 2 5 2 8 3 1

0.4

0.45

0.5

0.55

0.6

1 2 3 4 5 6 7 8 9 10 11
0 . 4

0 . 4 5

0 . 5

0 . 5 5

0 . 6

1 4 7 10 13 16 19 2 2 2 5 2 8 3 1

0.4

0.45

0.5

0.55

0.6

1 4 7 10 13 16 19 22 25 28

Table 3: Utility v. Iteration- Lander Random Walk Beam , Lander random walk GA, Lander GA
EO1 Random Walk Beam, EO1 Beam, EO1 GA

The results show that the local search optimization was
able to find strategies that significantly improved on the
expert strategies. We plot histograms (Table 2) for
randomly selected strategies in the Comet Lander and
EO-1 domains (key values from Table 1 - expert, and
learned strategies) indicated with arrows). These show
that the local search optimization techniques found very
good strategies overall in the space, among the best
possible strategies. The traces of the two local search
techniques operating on each of the domains is shown
below (e.g., deep sample utility versus iteration). The
shapes of these graphs (little early improvement) led us to
believe that the expert strategies are located in a valley of
the search space. In order to test this conjecture, we
generated random walks in the strategy spaces. This data
(Table 3 graphs towards left) confirms that the expert
strategies lay in a valley but that sufficient gradient
information existed to allow the learning to escape the
valley. One potential explanation could be that the
variance of the problems from a single domain requires a
large amount of flexibility in the planner heuristics (e.g.
stochasticity), whereas the expert designed the set of
heuristics such that it would choose a single non-random
strategy for each choice point every time (because it is
easier to understand such a strategy).

How did the local search techniques find their way out of
the valley? Local search algorithms are effective on these
domains if the search spaces are smooth with respect to
the candidate hypothesis generation functions.
Smoothness in a discrete domain can be determined by
measuring the difference in expected utility between
adjacent points, (wrt a search step definition) is small

compared to the difference in expected utility between
two randomly selected points in the search space. Table 2
shows the relative smoothness of the two domains for the
three search algorithms. For random search, adjacent
points are any two vectors in the strategy space (Genetic
Search EO-1 data forthcoming). The average difference
in expected utility is measured between two adjacent
points, where the initial point is a randomly generated
hypothesis, and the adjacent point is one step (as defined
by the candidate hypothesis generation function) from
that point.

5. Related Work, Future Work, and Conclusions
There is significant related work on efficient search
techniques. The Q2 algorithm optimizes the expected
output of a noisy continuous function, but does not have
guarantees on the results [14]. Response Surface Methods
[0] have been applied to optimization problems in
continuous domains, our but require modification for
discrete domains (as in our planning heuristics domain).
Evaluating control strategies is a growing area of interest.
Horvitz [6] described a method for evaluating algorithms
based on a cost versus quality tradeoff. Russell,
Subramanian, and Parr[10] used dynamic programming to
rationally select among a set of control strategies by
estimating utility, including cost. MULTI-TAC [8]
considers all k-wise combinations of heuristics for solving
a CSP in its evaluation, which also avoids problems with
local maxima, but at a large expense to the search.
Previous articles describing work in adaptive solving
described general methods, which have been developed
for transforming a standard problem solver into an

adaptive one. Gratch & Chien [5a] illustrated the
application of adaptive problem solving to real world
scheduling problems and showed how adaptive problem
solving can be cast as a resource allocation problem.
Zhang and Dietterich used reinforcement learning to learn
applicability condition for scheduling operators, using a
sliding time window of applicability for those operators
[12]. Our optimization approach is equivalent to learning
a naïve bayesian model using an Expectation
Maximization approach [15,16]. One difference is that
our model attempts to minimize resource usage by
updating the model after each sample, as opposed to
sampling in bulk, simply because of the high sample cost
and the low cost to update the model.

Future work includes determining how to adjust search
rates, learning composite strategies which involve logical
decisions about the relative usage of heuristics as opposed
to statistical methods, and a portfolio approach, which
combines heuristics and chooses which set to use based
on domain features judged statically or at run time.
Additional work has been proposed for hypothesis
evaluation based on a different set of stopping criteria,
which can be resource bounded (specifically considering

time as the resource), as in previous works on a similar
topic [4].

In this paper we have focused on selecting the planner
strategy with the highest expected utility. However other
aspects of the strategy might be relevant. Fore example,
consistent (e.g., predictable) performance might be
desired. In this case probabilistic decision criteria
incorporating undesirability of a high utility variance
strategy would need to be used. Specifically, the PAC
requirement does not incorporate any preference or
disliking for high variance strategies.

This paper has presented an approach to optimization of
expected values in a stochastic domain is common in real
world applications. Specifically, we presented an
approach based on local search of the optimization space.
We presented empirical results from an application to
learning planner heuristics in which learned strategies
significantly outperformed human expert derived
strategies. And we also presented empirical evidence that
these local search techniques performed well because
smoothness properties held in these applications.

Domain Random Search Local Beam Search Genetic Search

Mean Std Dev Mean Std Dev Mean Std Dev

Comet Lander 0.0435 0.0293 0.0086 0.0066 0.0134 0.0093

EO-1 0.0442 0.0466 0.0145 0.0244 - -

Table 2: Mean ∆∆∆∆expected-score between adjacent compared to random points

7. Bibliography
[0] Box, G.E.P., Draper, N. R. 1987. Empirical Model-
Building and Response Surfaces. Wiley.
[1] Chien, S., Gratch, J., Burl, M. 1995. “On the Efficient
Allocation of Resources for Hypothesis Evaluation: A
Statistical Approach.” In Proceedings of the IEEE
Transactions on Pattern Analysis and Machine
Intelligence 17(7), p. 652-665.
[2] Chien, S., Stechert, A., Mutz, D. 1999. “Efficient
Heuristic Hypothesis Ranking.” Journal of Artificial
Intelligence Research Vol 10: 375-397.
[3] Chien, S., Rabideau, G., Knight, R., Sherwood, R.,
Engelhardt, B., Mutz, D., Estlin, T., Smith, B., Fisher, F.,
Barrett, T., Stebbins, G., Tran, D. 2000. “ASPEN –
Automating Space Mission Operations using Automated
Planning and Scheduling.” SpaceOps 2000, Toulouse,
France.
[4] Fink, E. 1998. “How to Solve it Automatically:
Selection among Problem-Solving Methods.” In
Proceedings of the Fifth International Conf.AI Planning
Systems, 128-136.
[5] Goldberg, D. 1989. Genetic Algorithms: In Search,
Optimization and Machine Learning. Reading,

Massachusetts: Addison-Wesley.
[5a] J. M. Gratch and S. A. Chien, "Adaptive Problem-
solving for Large Scale Scheduling Problems: A Case
Study," Journal of Artificial Intelligence Research Vol. 4
(1996), pp. 365-396.
[6] Horvitz, E. 1988. “Reasoning under Varying and
Uncertain Resource Constraints.” In Proceedings of the
Seventh National Conference on Artificial Intelligence,
111-116.
[7] Lin, S., and Kernighan, B. 1973. “An Effective
Heuristic for the Traveling Salesman Problem,”
Operations Research Vol. 21.
[8] Minton, S. 1996. “Automatically Configuring
Constraint Satisfaction Programs: A Case Study.” In
Constraints 1:1(7-43).
[9] Russell, S., Norvig, P. 1995. Artificial Intelligence: A
Modern Approach. Upper Saddle River, NJ: Prentice
Hall.
[10] Russell, S., Subramanian, D., Parr, R. 1993.
“Provably Bounded Optimal Agents.” In Proceedings of
the Thirteenth International Joint Conference on Artificial
Intelligence.
[12] Zhang, W., Deitterich, T.G., (1996). “High-
Performance Job-Shop Scheduling With a Time-Delay
TD(λ) Network Proc. NIPS 8, 1024-1030.
[13] Zweben, M., Daun, B., Davis, E., and Deale, M.
1994. “Scheduling & Rescheduling with Iterative Repair.”
In Intelligent Scheduling. Morgan Kaufmann. 241-256.
[14] Moore, A., Schneider, T., Boyan, J., Lee, M. S.
1998. “Q2: Memory-based Active Learning for
Optimizing Noisy Continuous Functions.” Proc. ICML
1998.
[15] Heckerman, David. 1996. A Tutorial on Learning
with Bayesian Networks. MSR-TR-95-06, Microsoft
Corporation.
[16] Bishop, C. 1995. Neural Networks for Pattern
Recognition. Clarendon Press, Oxford.

	1. Introduction
	
	2. Stochastic Optimization

	3. Learning Planner Heuristics as Stochastic Optimization
	4. Empirical Results
	5. Related Work, Future Work, and Conclusions
	
	Domain

	7. Bibliography

